Multifidelity approaches for optimization under uncertainty
نویسندگان
چکیده
It is important to design robust and reliable systems by accounting for uncertainty and variability in the design process. However, performing optimization in this setting can be computationally expensive, requiring many evaluations of the numerical model to compute statistics of the system performance at every optimization iteration. This paper proposes a multifidelity approach to optimization under uncertainty that makes use of inexpensive, low-fidelity models to provide approximate information about the expensive, high-fidelity model. The multifidelity estimator is developed based on the control variate method to reduce the computational cost of achieving a specified mean square error in the statistic estimate. The method optimally allocates the computational load between the two models based on their relative evaluation cost and the strength of the correlation between them. This paper also develops an information reuse estimator that exploits the autocorrelation structure of the high-fidelity model in the design space to reduce the cost of repeatedly estimating statistics during the course of optimization. Finally, a combined estimator incorporates the features of both the multifidelity estimator and the information reuse estimator. The methods demonstrate 90% computational savings in an acoustic horn robust optimization example and practical design turnaround time in a robust wing optimization problem. Copyright © 2014 John Wiley & Sons, Ltd.
منابع مشابه
A Mathematical and Computational Framework for Multifidelity Design and Analysis with Computer Models
A multifidelity approach to design and analysis for complex systems seeks to exploit optimally all available models and data. Existing multifidelity approaches generally attempt to calibrate low-fidelity models or replace low-fidelity analysis results using data from higher fidelity analyses. This paper proposes a fundamentally different approach that uses the tools of estimation theory to fuse...
متن کاملSurvey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have varying evaluation costs and varying fidelities. Typically, a computationally expensive high-fidelity model describes the system with the accuracy required by the current application at hand, while lower-fidelity models are ...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملConstrained multifidelity optimization using model calibration
Multifidelity optimization approaches seek to bring higher-fidelity analyses earlier into the design process by using performance estimates from lower-fidelity models to accelerate convergence towards the optimum of a highfidelity design problem. Current multifidelity optimization methods generally fall into two broad categories: provably convergent methods that use either the high-fidelity gra...
متن کاملRobust production scheduling in open-pit mining under uncertainty: a box counterpart approach
Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically sensitive to the economic value volatility of block, block weight, and operational capacity. In order to deal with the OPPS uncertainties, various approaches can be recommended. Robust opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014